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Abstract
We define a class of orthosymplectic osp(m; j |2n; ω) and unitary sl(m; j |n; ε)

superalgebras which may be obtained from osp(m|2n) and sl(m|n) by
contractions and analytic continuations in a similar way as the special linear,
orthogonal and the symplectic Cayley–Klein algebras are obtained from the
corresponding classical ones. Casimir operators of Cayley–Klein superalgebras
are obtained from the corresponding operators of the basic superalgebras.
Contractions of sl(2|1) and osp(3|2) are regarded as examples.

PACS numbers: 02.20.−a, 02.10.Hh, 11.30.Pb

1. Introduction

Since its discovery [1–3] in 1971 supersymmetry has been used in different physical theories
such as Kaluza–Klein supergravity [4], supersymmetric field theories of the Wess–Zumino type
[5, 6] and massless higher-spin field theories [7]. Recently the secret theory [8] (or S-theory)
that includes superstring theory and its super p-brane and D-brane [9] generalizations were
discussed. All these theories are built algebraically with the help of some superalgebra as
their base. In this work we wish to present a wide class of Cayley–Klein (CK) superalgebras
which may be used for the construction of different supersymmetric models.

For ordinary Lie groups (or algebras) the title CK was initially used as the short name for
the set of motion groups of spaces of constant curvature. It is well known that there are 3n

n-dimensional spaces of constant curvature and their motion groups may be obtained from the
orthogonal group SO(n + 1) with the help of contractions and analytical continuations [10].
Later the notion CK was extended to the case of unitary and symplectic groups (algebras)
[11]. The typical (and attractive) property of CK groups is that all of them depend on the same
number of independent parameters as the corresponding simple classical group. At the level
of Lie algebras this means that all CK algebras of the same type have the same dimensions.
Basic superalgebras include simple algebras as even subalgebras, so it looks quite natural to
introduce a new class of superalgebras with CK algebras as even subalgebras.
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A superalgebra as an algebraic structure contains (as compared with Lie algebra) a new
additional operation, namely, Z2-grading. So under the contraction of superalgebra this Z2-
grading must be conserved. To our knowledge contraction of an orthosymplectic superalgebra
to the superkinematics was first discussed in [12]. The detailed investigation of a class of
contractions of osp(1|2) and osp(1|4) to the kinematical Poincaré and Galilei superalgebras
was made in [13]. Contraction of unitary superalgebra Gsu(2) = sl(2|1) as well as their
representations was described in [14]. Later the notion of contraction was generalized [15, 16]
to the case of Lie algebra and superalgebra with an arbitrary finite grading group and is known
as graded contractions. A new kind of discrete contraction was defined and also found in these
papers. Nevertheless the particular case of the simplest Z2-grading deserves an independent
interest. It should be mentioned that contractions of quantum deformations of superalgebras
mentioned in [17] form a separate line of investigation. In connection with a superstring
theory in anti-de Sitter space the generalized Inönü–Wigner contraction was proposed [6],
which keeps the next-to-leading term of a contraction parameter and gives a correct flat limit
of the Wess–Zumino term. We deal with the standard Inönü–Wigner contractions [18], but
we use nilpotent-valued contraction parameters instead of zero-tending ones. Our preliminary
results were reported in [19].

The paper is organized as follows. In section 2, the orthogonal, symplectic and special
linear CK groups and algebras are briefly recalled. Section 3 is devoted to the orthosymplectic
CK superalgebras. CK unitary superalgebras are discussed in section 4. Casimir operators of
the CK unitary and orthosymplectic superalgebras are described in section 5.

2. Orthogonal, symplectic and special linear Cayley–Klein algebras

Special linear sl(m), orthogonal so(m) and symplectic sp(2n) algebras are even subalgebras
of classical basic superalgebras. On the other hand, all of them may be contracted and
analytically continued to the set of CK algebras. Lie groups and algebras are in close
relations. The CK group SO(m; j) is defined as the set of transformations of vector space
Rm(j), which preserve the quadratic form x2(j) = xt(j)x(j) = x2

1 +
∑m

k=2(1, k)2x2
k , where

(i, k) = ∏max(i,k)−1
p=min(i,k) jp, (i, i) = 1, each parameter jk = 1, ιk, i, where ιk are nilpotent ι2k = 0,

commutative ιkιp = ιpιk �= 0 generators of Pimenov algebra P(ι). The Cartesian components
of vector x(j) ∈ Rm(j) are xt(j) = (x1, j1x2, . . . , (1,m)xm)t , as easily follows from x2(j).
For an m × m matrix g(j) ∈ SO(m; j) the transformation g(j) : Rm(j) → Rm(j) means
that the vector x ′(j) = g(j)x(j) has exactly the same distribution of parameters j among
its components as x(j). This requirement gives an opportunity to obtain the distribution of
parameters j among the elements of matrix g(j), i.e. to build the fundamental representation
of the CK group SO(m; j) starting from the quadratic form. It is remarkable that the same
distribution of parameters j holds for the CK Lie algebra so(m; j), namely Aik = (i, k)aik , for
A ∈ so(m; j).

For the simple case m = 3 the nine CK plane geometries (or geometries of constant
curvature) are realized on the spheres S2(j) = {

x2
1 + j 2

1 x2
2 + j 2

1 j 2
2 x2

3 = 1
}

in the spaces R3(j)

with Cartesian coordinatesx1, j1x2, j1j2x3. The identifications of the well-known plane names
and the values of parameters j1, j2 are given in table 1. The motion group of the geometry
S2(j) is isomorphic with the following matrix group SO(3; j) = {g(j)| det g(j) = 1,

gt (j)g(j) = I }, whose elements are nilpotent under nilpotent values of j. It is worth
remarking that the same motion group can also be described with the help of the real matrix
group SO(3; j) = {g̃(j )| det g̃(j ) = 1, g̃t (j )g̃(j) = I }, where matrices g(j) and g̃(j ) are as
follows:
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Table 1. The nine Cayley–Klein plane geometries.

j1 = 1 j1 = ι1 j1 = i

j2 = 1 Elliptic Euclidean Lobachevskian
(hyperbolic)

j2 = ι2 Semielliptic Galilean Semihyperbolic
(co-Euclidean) (co-Minkowskian)

j2 = i Anti-de Sitter Minkowskian de Sitter

g(j) =

 g11 j1g12 j1j2g13

j1g21 g22 j2g23

j1j2g31 j2g32 g33


 g̃(j ) =


g̃11 j 2

1 g̃12 j 2
1 j 2

2 g̃13

g̃21 g̃22 j 2
2 g̃23

g̃31 g̃32 g̃33


 .

The rotation matrix generators of the CK algebra so(3; j) are given by

E12 = j1


0 −1 0

1 0 0
0 0 0


 E13 = j1j2


0 0 −1

0 0 0
1 0 0


 E23 = j2


0 0 0

0 0 −1
0 1 0




and are the subject of the commutation relations [H,P ] = j 2
1 K, [P,K] = j 2

2 H, [H,K] =
−P , where H = E12 is the generator of time translation, P = E13 is the generator of space
translation and K = E23 is the generator of Galilei (j2 = ι2) or Lorentz (j2 = i) boost in the
cases when CK spaces S2(j) may be interpreted as kinematics. More details on CK geometries
and their motion groups are, for example, given in [20].

The set of transformations L(j) : Rm(j) → Rm(j) with the property det L(j) = 1 forms
the CK special linear group SL(m; j) and the corresponding CK algebras sl(m; j) are given by
the m×m matrices l(j), tr l(j) = 0. Let us stress that in the Cartesian basis all matrices from
SL(m; j), SO(m; j), sl(m; j), so(m; j) have identical distribution of parameters j among
their elements, i.e. they are of the same type as the matrices with elements from Pimenov
algebra P(j).

The CK symplectic group Sp(2n; ω) is defined as the set of transformations of
Rn(ω) × Rn(ω), which preserve the bilinear form S(ω) = S1 +

∑n
k=2[1, k]2Sk , where

Sk(y, z) = ykzn+k − yn+kzk, [i, k] = ∏max(i,k)−1
p=min(i,k) ωk, [i, i] = 1, ωk = 1, ξk, i, ξ

2
k = 0, ξkξp =

ξpξk. The distribution of parameters ωk among the matrix elements of the fundamental
representation M(ω) = (

H(ω) E(ω)

F (ω) −Ht (ω)

)
of the CK symplectic algebra sp(2n; ω) may be obtained

as for the orthogonal CK algebras and is as follows: Bik = [i, k]bik, where B =
H(ω),E(ω), F (ω).

3. Orthosymplectic superalgebras osp(m; j|2n; ω)

Let eIJ ∈ Mm+2n satisfying (eIJ )KL = δIKδJL be elementary matrices. One defines the
following graded matrix [21]:

G =

Im 0

0 0 In

−In 0


 (1)

where Im, In are identity matrices. Let i, j, . . . = 1, . . . ,m, ī, j̄ , . . . = m + 1, . . . ,m + 2n.
The generators of the orthosymplectic superalgebra osp(m|2n) are given by
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Eij = −Eji =
∑

k

(Gikekj − Gjkeki)

Eīj̄ = Ej̄ī =
∑

k̄

(Gīk̄ek̄j̄ + Gj̄k̄ek̄ī )

Eij̄ = Ej̄i =
∑

k

Gikekj̄ +
∑

k̄

Gj̄ k̄ek̄i

(2)

where the even (bosonic) Eij generate the so(m) part, the even (bosonic) Eīj̄ generate the
sp(2n) part and the rest, Eij̄ , are the odd (fermionic) generators of superalgebra. They satisfy
the following (super)commutation relations:

[Eij , Ekl] = GjkEil + GilEjk − GikEjl − GjlEik

[Eīj̄ , Ek̄l̄] = −Gj̄k̄Eīl̄ − Gīl̄Ej̄k̄ − Gj̄l̄Eīk̄ − Gīk̄Ej̄ l̄

[Eij , Ekl̄] = GjkEil̄ − GikEjl̄, [Eij̄ , Ek̄l̄] = −Gj̄k̄Eil̄ − Gj̄l̄Eik̄

[Eij , Ek̄l̄] = 0 {Eij̄ , Ekl̄} = GikEj̄ l̄ − Gj̄l̄Eik.

(3)

In the matrix form osp(m|2n) = {M ∈ Mm+2n|MstG + GM = 0}. If the matrix M has the
following form: M = ∑

i,j aijEij +
∑

ī,j̄ bīj̄Eīj̄ +
∑

ij̄ µij̄Eij̄ , with aij , bīj̄ ∈ R or C and µij̄

as the odd nilpotent elements of the Grassmann algebra: µ2
ij̄

= 0, µij̄µi′ j̄ ′ = −µi′ j̄ ′µij̄ , then
the corresponding supergroup OSp(m|2n) is obtained by the exponential map M = exp M

and acts on (super)vector space by matrix multiplication X ′ = MX , where X t = (x|θ)t, x

is an n-dimensional even vector and θ is a 2m-dimensional odd vector with odd Grassmann
elements. The form inv = ∑m

i=1 x2
i + 2

∑n
k=1 θ+kθ−k = x2 + 2θ2 is invariant under this action

of the orthosymplectic supergroup.
We shall define CK orthosymplectic superalgebras starting with the invariant form

inv(j ; ω) = u2
m∑

k=1

(1, k)2x2
k + 2v2

m+n∑
k̄=m+1

[1, ˆ̄k]2θ ˆ̄kθ− ˆ̄k ≡ u2x2(j) + 2v2θ2(ω) (4)

ˆ̄k = k̄ − m, when k̄ = m + 1, . . . ,m + n and ˆ̄k = k̄ − m − n, when k̄ = m + n + 1, . . . ,m + 2n,
which is the natural unification of the CK orthogonal and symplectic forms. The distributions
of contraction parameters j, ω among the matrix elements of the fundamental representation
of osp(m; j |2n; ω) and the transformations of the generators (2) are obtained in a standard
CK manner and are as follows:

Eik = (i, k)E�
ik Eīk̄ = [ ˆ̄i, ˆ̄k]E�

īk̄
Eik̄ = u(1, i)v[1, ˆ̄k]E�

ik̄
(5)

where E� are generators (2) of the starting superalgebra osp(m|2n). The transformed
generators are the subject of the (super)commutation relations:

[Eij , Ekl] = (i, j)(k, l)

(
GjkEil

(i, l)
+

GilEjk

(j, k)
− GikEjl

(j, l)
− GjlEik

(i, k)

)

[Eīj̄ , Ek̄l̄] = −[ ˆ̄i, ˆ̄j ][ ˆ̄k, ˆ̄l]

(
Gj̄k̄Eīl̄

[ ˆ̄i, ˆ̄l]
+

Gīl̄Ej̄k̄

[ ˆ̄j, ˆ̄k]
+

Gīk̄Ej̄ l̄

[ ˆ̄j, ˆ̄l]
+

Gj̄l̄Eīk̄

[ ˆ̄i, ˆ̄k]

)

[Eij , Ek̄l̄] = 0 [Eij , Ekl̄] = (i, j)(1, k)

(
GjkEil̄

(1, i)
− GikEjl̄

(1, j)

)

[Eij̄ , Ek̄l̄] = −[1, ˆ̄j ][ ˆ̄k, ˆ̄l]

(
Gj̄k̄Eil̄

[1, ˆ̄l]
+

Gj̄l̄Eik̄

[1, ˆ̄k]

)

{Eij̄ , Ekl̄} = u2v2(1, i)[1, ˆ̄j ](1, k)[1, ˆ̄l]

(
GikEj̄ l̄

[ ˆ̄j, ˆ̄l]
− Gj̄l̄Eik

(i, k)

)
.

(6)
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For the u = ι or v = ι, ι2 = 0 superalgebra osp(m|2n) is contracted to an inhomogeneous
superalgebra, which is the semidirect sum {Eij̄ }+⊃ (so(m) ⊕ sp(2n)), with all anticommutators
of the odd generators equal to zero {Eij̄ , Ekp̄} = 0.

3.1. Example: CK contractions of osp(3|2)

This superalgebra has so(3) as even subalgebra therefore the contractions to the kinematical
(1 + 1) Poincaré, Newton and Galilei superalgebras may be fulfilled according to the general
CK scheme of section 1. But unlike the two odd generators of osp(1|2), the superalgebra
osp(3|2) has six odd generators. In the basis Xik = Eki, k, i = 1, 2, 3, F = 1

2 E44, E =
− 1

2E55,H = −E45,Qk = Ek4,Q−k = Ek5 the generators are affected by the contraction
coefficients j1, j2 as follows:

Xik → (i, k)Xik Q±k → (1, k)Q±k (7)

and H, F, E remain unchanged. Then superalgebra osp(3; j|2) is given by

[X12,X13] = j 2
1 X23 [X13,X23] = j 2

2 X12 [X23,X12] = X13

[H,E] = 2E [H,F ] = −2F [E,F ] = H

[Xik,Q±i ] = Q±k [Xik,Q±k] = −(i, k)2Q2
±i i < k

(8)
[H,Q±k] = ∓Q±k [E,Qk] = −Q−k [F,Q−k] = −Qk

{Qk,Qk} = (1, k)2F {Q−k,Q−k} = −(1, k)2E

{Qk,Q−k} = −(1, k)2H {Q±i ,Q∓k} = ±(1, k)2Xik.

The non-minimal Poincaré superalgebra is obtained for j1 = ι1, j2 = i and has the structure
of the semidirect sum T +⊃({X23} ⊕ osp(1|2)), where Abelian T = {X12,X13,Q±2,Q±3}
and osp(1|2) = {H,E,F,Q±1}. The Newton superalgebra osp(3; ι2|2) = T2 +⊃ osp(2|2),
where T2 = {X13,X23,Q±3} and osp(2|2) is generated by X12,H,E,F,Q±1,Q±2. Finally
the non-minimal Galilei superalgebra may be presented as semidirect sums osp(3; ι1, ι2|2) =
(T +⊃{X23})+⊃ osp(1|2) = T +⊃ ({X23} ⊕ osp(1|2)).

4. Unitary superalgebras sl(m; j|n; ε)

The superalgebras sl(m|n) can be generated as matrix superalgebras by taking matrices of the
form [21]

M =
(

Xmm Tmn

Tnm Xnn

)
(9)

where Xmm and Xnn are gl(m) and gl(n) matrices, Tmn and Tnm are m×n and n×m matrices,
respectively, with the supertrace condition

str(M) = tr(Xmm) − tr(Xnn) = 0. (10)

This matrix superalgebra is the set of transformations of the superspace with m even coordinates
x1, . . . , xm and n odd ones θ1, . . . , θn.

A basis of superalgebra sl(m|n) can be constructed as follows. Define the (m + n)2 − 1
generators

Eij = eij − 1

m − n
δij


 m∑

k=1

ekk +
m+n∑

k̄=m+1

ek̄k̄


 Eij̄ = eij̄

Eīj̄ = eīj̄ +
1

m − n
δīj̄


 m∑

k=1

ekk +
m+n∑

k̄=m+1

ek̄k̄


 Eīj = eīj

(11)
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where the indices i, j, . . . run from 1 to m and ī, j̄ , . . . from m + 1 to m + n. The generators
of sl(m|n) in the Cartan–Weyl basis are given by

Hi = Eii − Ei+1,i+1 1 � i � m − 1

Hī = Eīī − Eī+1,ī+1 m + 1 � ī � m + n − 1

Hm = Emm + Em+1,m+1

Eij for sl(m) Eīj̄ for sl(n)

Eij̄ and Eīj for the odd part

(12)

and their commutation relations appear as

[HI ,HJ ] = 0

[HK,EIJ ] = δIKEKJ − δI,K+1EK+1,J − δKJEIK + δK+1,J EI,K+1 (K �= m)

[Hm,EIJ ] = δImEmJ − δI,m+1Em+1,J − δmJ EIm + δm+1,J EI,m+1

[EIJ ,EKL] = δJKEIL − δILEKJ for EIJ and EKL even

[EIJ ,EKL] = δJKEIL − δILEKJ for EIJ even and EKL odd

{EIJ ,EKL} = δJKEIL + δILEKJ for EIJ and EKL odd.

(13)

CK special linear (or unitary) superalgebras sl(m; j |n; ε) are consistent with the
transformations of (super)vectors

X t (j, ε) = (x1, j1x2, . . . , (1,m)xm|ν(xm+1, ε1xm+2, . . . , [1, n]xm+n))
t (14)

where the odd components are denoted as xm+1 = θ1, . . . , xm+n = θn and ˆ̄i = ī − m, ˆ̄k =
k̄ − m = 1, . . . , n, [ ˆ̄i, ˆ̄k] = ∏max( ˆ̄i, ˆ̄k)−1

l=min( ˆ̄i, ˆ̄k)
εl , εl = 1, ξl, i, ξ

2
l = 0, ξlξp = ξpξl �= 0. The

components of X (j ; ε) are chosen in such a way that the contraction parameters εl of the odd
components are independent of the contraction parameters jl of the even ones. The
transformations of the standard generators (12) (marked with a star) of the special linear
superalgebra sl(m|n) to the generators of sl(m; j |n, ε) are given by

HI = H�
I Eij = (i, j)E�

ij Eīj̄ = [ ˆ̄i, ˆ̄j ]E�
īj̄

i �= j ī �= j̄

Eij̄ = ν(1, i)[1, ˆ̄j ]E�
ij̄

Eīj = ν(1, j)[1, ˆ̄i]E�
īj

.
(15)

Nonzero commutators and anticommutators are easily obtained from the corresponding
commutation relations (13) of the initial superalgebra sl(m|n) in the form

[HK,EIJ ] = δIKEKJ − δI,K+1EK+1,J − δKJEIK + δK+1,J EI,K+1

[Eij , Ejl] =



Eil i < j < l l < j < i l �= i

(l, j)2Eil i < l < j or j < l < i

(i, j)2Eil l < i < j or j < i < l

[Eij , Ekj ] =



−Ekj k < i < j j < i < k k �= j

−(i, j)2Ekj i < j < k or k < j < i

−(i, k)2Ekj i < k < j or j < k < i

[Eij , Eji] = (i, j)2(Eii − Ejj )

[Eīj̄ , Ej̄ l̄] =




Eīl̄ ī < j̄ < l̄ l̄ < j̄ < ī l̄ �= ī

[ ˆ̄l, ˆ̄j ]2Eīl̄ ī < l̄ < j̄ or j̄ < l̄ < ī

[ ˆ̄i, ˆ̄j ]2Eīl̄ l̄ < ī < j̄ or j̄ < ī < l̄
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[Eīj̄ , Ek̄j̄ ] =




−Ek̄j̄ k̄ < ī < j̄ j̄ < ī < k̄ k̄ �= j̄

−[ ˆ̄i, ˆ̄j ]2Ek̄j̄ ī < j̄ < k̄ or k̄ < j̄ < ī

−[ ˆ̄i, ˆ̄k]2Ek̄j̄ ī < k̄ < j̄ or j̄ < k̄ < ī

[Eīj̄ , Ej̄ ī] = [ ˆ̄i, ˆ̄j ]2(Eīī − Ej̄j̄ )

[Eij , Ejl̄] =
{
(i, j)2Eil̄ i < j

Eil̄ i > j
[Eij , Ek̄i] =

{−Ek̄j i < j

−(j, i)2Ek̄j i > j

[Eīj̄ , Ekī] =
{

−Ekj̄ ī < j̄

−[ ˆ̄j, ˆ̄i]2Ekj̄ ī > j̄
[Eīj̄ , Ej̄l] =

{
[ ˆ̄i, ˆ̄j ]2Eīl ī < j̄

Eīl ī > j̄

{Eij̄ , Ej̄l} =
{

ν2[1, ˆ̄j ]2(1, i)2Eil i < l

ν2[1, ˆ̄j ]2(1, l)2Eil i > l

{Eij̄ , Ek̄i} =
{

ν2(1, i)2[1, ˆ̄j ]2Ek̄j̄ j̄ < k̄

ν2(1, i)2[1, ˆ̄k]2Ek̄j̄ j̄ > k̄

{Eij̄ , Ej̄i} = ν2(1, i)2[1, ˆ̄j ]2(Eii + Ej̄j̄ ).
(16)

For ν = ι superalgebra sl(m|n) is contracted to an inhomogeneous superalgebra, which is
the semidirect sum {Eij̄ , Eīj }+⊃ (sl(m)⊕sl(n)), with all anticommutators of the odd generators
equal to zero.

4.1. Example: CK contractions of sl(2|1)

The generators of superalgebra sl(2; j1; ν|1) are given by [21]

H =



1
2 0 0
0 − 1

2 0

0 0 0


 Z =




1
2 0 0
0 1

2 0

0 0 1




E12 = E+ =

0 j1 0

0 0 0

0 0 0


 E21 = E− =


 0 0 0

j1 0 0

0 0 0




E13 = F̄ + =

0 0 ν

0 0 0

0 0 0


 E31 = F− =


0 0 0

0 0 0

ν 0 0




E32 = F + =

0 0 0

0 0 0

0 νj1 0


 E23 = F̄− =


0 0 0

0 0 νj1

0 0 0




(17)

and act on the superspace (x1, j1x2|νθ1). The commutation relations are represented as

[H,E±] = ±E± [E+, E−] = 2j 2
1 H

[Z,H ] = [Z,E±] = [E±, F̄ ±] = [E±, F±] = 0

[H, F̄±] = ± 1
2 F̄± [H,F±] = ± 1

2F± [Z,F±] = 1
2F± [Z, F̄±] = − 1

2 F̄±

[E+, F−] = −F + [E−, F +] = −j 2
1 F− [E+, F̄ −] = j 2

1 F̄ + [E−, F̄ +] = F̄−

{F +, F̄ −} = ν2j 2
1 (Z − H) {F−, F̄ +} = ν2(Z + H)

{F̄ +, F +} = ν2E+ {F̄−, F−} = ν2E− {F̄ +, F̄−} = {F +, F−} = 0.

(18)
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For ν = ι we obtain the semidirect sum of the Abelian odd subalgebra with the
direct sum of the even subalgebras, namely, sl(2; j1; ι|1) = {F±, F̄ ±}+⊃ (u(1) ⊕ sl(2)).
The two-dimensional contraction ν = ι, j1 = ι1 results in similar semidirect sum
sl(2; ι1; ι|1) = {F±, F̄ ±}+⊃ (u(1) ⊕ sl(2; ι1)) but with the subalgebra sl(2; ι1) = {H,E±}
instead of sl(2). Under contraction j1 = ι1 we have the semidirect sum sl(2; ι1; ν|1) =
{E±, F +, F̄−}+⊃{H,Z,F−, F̄ +} of the subsuperalgebras, each of them generating both even
and odd generators.

5. Casimir operators

The study of Casimir operators plays a great role in the representation theory of simple Lie
algebras since their eigenvalues characterize representations. In the case of Lie superalgebras
their eigenvalues completely characterize a typical representation while they are identically
vanishing on an atypical representation. An element C of the universal enveloping superalgebra
U(A) commuting with all elements of U(A) is called a Casimir operator of superalgebra A.
The algebra of the Casimir operators of A is the Z2-centre of U(A).

The Casimir operators of the basic Lie superalgebras can be constructed as follows
[21–23]. Let A = sl(m|n) with m �= n or osp(m|n) be a basic Lie superalgebra. Let {EIJ }
be a matrix basis of the generators of A where I, J = 1, . . . ,m + n with degI = 0 for
I = 1, . . . ,m and degI = 1 for I = m + 1, . . . ,m + n. Then defining (Ē)IK = (−1)degKEIK ,
a standard sequence of Casimir operators is given by

Cp =str(Ēp)=
m+n∑
I=1

(−1)degI (Ēp)II =
m+n∑

I,I1,...,Ip−1=1

EII1(−1)degI1 . . . EIkIk+1(−1)degIk+1 . . . EIp−1I .

(19)

In the case of sl(m|n) with m �= n one finds, for example, C1 = 0 and

C2 =
m∑

i,j=1

EijEji −
m+n∑

k̄,l̄=m+1

Ek̄l̄El̄k̄ +
m∑

i=1

m+n∑
k̄=m+1

(Ek̄iEik̄ − Eik̄Ek̄i) − m − n

mn
Y 2. (20)

The diagonal elements of matrix Ē are taken in the form (Ē)ii = Eii + 1
m
Y, (Ē)k̄k̄ = −Ek̄k̄ + 1

n
Y

and two conditions on the generators:
∑m

i=1 Eii = 0,
∑m+n

k̄=m+1 Ek̄k̄ = 0 are taken into
consideration. In the case of osp(m|n) one finds C1 = 0 and

C2 =
m∑

i,j=1

EijEji −
m+n∑

k̄,l̄=m+1

Ek̄l̄El̄k̄ +
m∑

i=1

m+n∑
k̄=m+1

(Ek̄iEik̄ − Eik̄Ek̄i). (21)

One has to stress that unlike the algebraic case, the centre of U(A) for the classical Lie
superalgebras is, in general, not finitely generated. For only Lie superalgebra osp(1|2n) the
centre of its universal enveloping superalgebra is generated by n Casimir operators of degree
2, 4, . . . , 2n.

To obtain Casimir operators of superalgebra sl(m; j |n; ε) we shall proceed in the standard
manner. First, we get the matrix Ē(j ; ε). For this we put in matrix Ē the new generators of
sl(m; j |n; ε) instead of the old ones of sl(m; n) according to (15) and denote the obtained
matrix as Ē(→). In general its elements are undefined for nilpotent values of parameters
j, ε, ν. So it is necessary to multiply Ē(→) on the minimal multiplier which eliminates all
undefined expressions in matrix elements, namely, ν(1,m)[1, n]. Finally we have

Ē(j ; ε) = ν(1,m)[1, n]Ē(→) (22)
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with matrix elements (k �= p, k̄ �= p̄)

(Ē(j ; ε))kk = ν(1,m)[1, n]

(
Ekk +

1

m
Y

)
(Ē(j ; ε))k̄k̄ = ν(1,m)[1, n]

(
−Ek̄k̄ +

1

n
Y

)

(Ē(j ; ε))kp = ν(1, k)(p,m)[1, n]Ekp (Ē(j ; ε))k̄p̄ = ν(1,m)[1, ˆ̄k][ ˆ̄p, n]Ek̄p̄

(Ē(j ; ε))ik̄ = −(i,m)[ ˆ̄k, n]Eik̄ (Ē(j ; ε))īk = (k,m)[ ˆ̄i, n]Eīk.

(23)

The maximal multiplier ν(1,m)[1, n] has the diagonal elements and the minimal unit multiplier
has the matrix elements (Ē(j ; ε))m,m+n = Em,m+n, (Ē(j ; ε))m+n,m = Em+n,m.

The sequence of Casimir operators of sl(m; j |n; ε) is given by

Cp(j ; ε) = str Ēp(j ; ε) = νp(1,m)p[1, n]p str(Ē(→))p. (24)

Indeed, let X� be an arbitrary generator of sl(m|n). Under computing [Cp,X�] = 0 we get
identical terms but with opposite signs (plus and minus) so their sum is equal to zero. Under
transformation of this commutator to the corresponding commutator of sl(m; j |n; ε) identical
terms are multiplied on identical multipliers, therefore, their sum remains equal to zero, i.e.
[Cp(j ; ε),X] = 0.

Let us illustrate the above expressions with the simple example of the sl(2; j1|1)

superalgebra. The generators are transformed as follows:
E11 = E�

11 Y = Y � E12 = j1E
�
12 E21 = j1E

�
21

E13 = νE�
13 E31 = νE�

31 E23 = νj1E
�
23 E32 = νj1E

�
32

(25)

and matrix Ē(j1) according to (22)–(23) is given by

Ē(j1) = νj1Ē(→) = νj1




E11 + 1
2Y 1

j1
E12 − 1

ν
E13

1
j1

E21 −E22 + 1
2Y − 1

νj1
E23

1
ν
E31

1
νj1

E32 Y




=

νj1

(
E11 + 1

2 Y
)

νE12 −j1E23

νE21 νj1
(−E22 + 1

2 Y
)

−E23

j1E31 E32 νj1Y


 . (26)

The first-order Casimir operator disappears C1(j1) = strĒ(j1) = 0. The second-order Casimir
operator is as follows:

C2(j1) = str(Ē(j1))
2 = ν2j 2

1

(
2E2

11 − 1
2Y 2

)
+ ν2 (E12E21 + E21E12)

+ j 2
1 (E31E13 + E13E31) + E32E23 − E23E32. (27)

In the case of superalgebras osp(M|N) the multiplier in (23) equals ν(1,M)
[
1, N

2

]
and all

formulae for matrix Ē(j ; ε) and matrix elements (Ē(j ; ε))kp appear as for the sl(m; j |n; ε)

with substitutions m = M and n = N
2 . Let us consider the osp(1|2; ν) superalgebra as an

example. Its generators are transformed as

E12 = νE�
12 E13 = νE�

13 E23 = E�
23 E32 = E�

32 E22 = E�
22 (28)

and matrix Ē(ν) is given by

Ē(ν) = −ν




0 1
ν
E12

1
ν
E13

1
ν
E13 E22 E23

− 1
ν
E12 E32 −E22


 = −


 0 E12 E13

E13 νE22 νE23

−E12 νE32 −νE22


 . (29)

The first-order Casimir operator equals zero, C1(ν) = strĒ(ν) = 0 and the second-order
Casimir operator is represented as

C2(ν) = ν2E2
22 + (E12E13 − E13E12) − 1

2ν2 (E32E23 + E23E32) . (30)
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6. Conclusion

Using classical CK Lie algebras of different types we have built basic CK superalgebras.
Unlike the standard procedure [18] of zero-tending parameter contractions in this work are
described with the help of nilpotent-valued parameters. Such an approach gives an opportunity
to obtain the distribution of contraction parameters among superalgebra generators starting
from quadratic form, and hence, to build CK superalgebras by means of pure algebraic tools
without a limiting procedure. Contracted superalgebras are connected with transformations
of superspaces with nilpotent Cartesian coordinates and represent a wide class of different
semidirect sums for different possible contractions. Infinite sequences of Casimir elements of
CK superalgebras have been obtained by suitable transformations of the standard expressions
of the corresponding operators of the basic superalgebras. It is our hope that CK superalgebras
will be relevant for the construction of supersymmetric physical models.
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[18] Inönü E and Wigner E P 1953 Proc. Natl Acad. Sci. USA 39 510
[19] Gromov N A, Kostyakov I V and Kuratov V V 2002 Quantum Theory and Symmetries (Proc. II Int. Symp.

(Krakow, Poland, 18–21 July 2001)) (River Edge, NJ: World Scientific) p 360 (Preprint hep-th/0110257)
[20] Gromov N A 1990 Int. J. Theor. Phys. 29 607
[21] Frappat L, Sciarrino A and Sorba P 1996 Dictionary on Lie superalgebras Preprint hep-th/9607161, ENSLAPP-

AL-600/96 and DSF-T-30/96
[22] Leites D and Sergeev A 2002 Preprint math.RT/0202180 v1
[23] Arnaudon D, Chryssomalakos C and Frappat L 1995 Preprint q-alg/9503021 v2, ENSLAPP-A-505/95


